Altium

WB_ASP - Configuration

Modified by on 6-Nov-2013

The WB_ASP can be configured after placement on the OpenBus System document, or schematic
sheet, using the associated Configure (WB_ASP Properties) dialog (Figure 1). Access to this dialog
depends on the document in which you are working:

- In the OpenBus System document - access the dialog by right-clicking over the component and
choosing the Configure command from the menu that appears. Alternatively, double-click on the
component to access the dialog directly.

- In the Schematic document - simply right-click over the device and choose the Configure
command from the context menu that appears. Alternatively, click on the Configure button,
available in the Component Properties dialog for the device.

Configure UF (WH_ASP Properties)

ASP Dipticng Spmnbolz In Hardwars

Processar u3 - Global Vanabla Alocabs in Haidwaie -
did_indes

Uz the Toloving oplions 1o enable o dizable chd_max_mae_spk

acoaleration “ou can do s al either tha FPGA o did_max_sph

Ik pricEd il code el ema_bul

The Gereeale A5P ophon canlicls whethst arg FPGA ema_ kbt

logic iz genersted. Disable this ophon ko glabaly 125_conbext

disable e A5F and rot geresate any FPGRA logc 2% ikl

The Use ASF fom Software option controls whether i2z_oulbu

ther codie nunning on the processor will call the A5P or ma:_addy

k. Digable thiz option lo deable te wee of the ASP mic_wl_lowpasd

whila 1etaining he ASP logic in the FPGA mic_ i, highpatst
mic_wh_lowpasaf
rims_pas w

[#] Gererate A5P rims_spk L
o
[Lis= ASP fram Software ey veeigh
spl_m1_kwwpassl
-
Paramster Bus Optors Fuinetion Implesmeet i Haidker... | Expoil ba Softwans
a8C

Sebect the size of the address bus widd It anc_ink

shoukd be laige enoudh 1o addiess the) chplest

pavamenarz of the laipest funclicn in the degign ;:--c

Audckess Bus Width 5 — did_imit
amac 12 st

Selact he number of spaces aller the ink_sucho

parametal bus on he sshemalc nl_smac
L]

Exra space: 1 - Fiie 7 ¢
rims_jinik w W
reai_samples
neceive_sample
syr_inmit
transmit_sample
wiks_rample

oK [Corcat |

Figure 1. Configuring the ASP peripheral.

Use the dialog to configure the WB_ASP peripheral in accordance with design requirements. The
dialog is divided into three areas. The following sections take a closer look at the options available in
each of these areas.

ASP Options

The Processor field in this area of the dialog allows you to specify the processor that is connected to
the WB_ASP and which can therefore call functions that have been generated in hardware. If your
design contains multiple processors, simply choose the required processor (by designator) from the
drop-down field.

The Generate ASP option provides the ability to enable or disable generation of hardware-compiled
functions. With this option enabled, the C-to-Hardware Compiler will be invoked when you compile
and synthesize your design project. All functions that have been enabled for implementation in
hardware will be created as electronic circuits in the FPGA fabric.

The Use ASP from Software option enables you to control, on a global level, whether functions
compiled into hardware will be called by software-based functions running within the processor. If this
option is disabled, the embedded compiler will generate the functions in software and these will be
used.

In terms of code development, debugging a function is only really possible at the C source code level
- it is near-impossible to debug the corresponding hardware implementation of that function. By
enabling the Generate ASP option, and disabling the Use ASP from Software option, you can
effectively test and develop the software-compiled code only. The FPGA logic for any functions
enabled for implementation in hardware will still be generated, but the processor will only use
software-compiled versions of those functions. Once the software is fully debugged and operates as
required, simply enable the Use ASP from Software option to switch over to using the hardware
implementations of those functions.

The VHDL or Verilog hardware implementation of a function, generated by the C-to-Hardware
Compiler, is "correct by construction". As long as the C code is fully debugged and error free, then the
generated HDL code will also be free of errors.

The Use ASP from Software option can also be enabled/disabled at the source code level, using the
C To Hardware panel (Figure 2).

AT
Apphcabon Specihc Processor L
Drocasmesi CHC_EchaCancellsbon SchDos

FPGEA Project CHC_E ekaCanceligion FiFpa

_[#] Use ASP trom Software)
The ASP wil be gersialed and used. ivecelersbed lutions vl be
placed rta FPUA loge and val be called by softwee.

Selings

Global Variable Allocale in Handkwae |
mec_mk_gFipacs

Tin_inh_loveparssd

lewes_poces v

milwes_ sk W

T ¥

spi_inl_lovapassf

Fuarction Implamant in Hadware| Expont o Soflwae | =
il

dtd

dhd_irit

i ¥ v

ribma_ it v A)

Figure 2. Globally controlling use of hardware functions
at the code level.

If a design has been processed with the Generate ASP option enabled, then if the state of the Use
ASP from Software option is changed, you only need to recompile and download the updated
embedded software. Full reprocessing of the entire FPGA project is not required as the logic for the
hardware functions already exists. In this way you can quickly switch between software-only and
software-hardware implementations of the design, to observe the benefits obtained by using
hardware acceleration.

Parameter Bus Options

This area of the dialog allows you to define the width of the WB_ASP's host interface address bus (
io ADR I). The address bus is used by the processor to access and pass values to parameters in a
hardware function, and also to access and read back a function's return value, where applicable.

The CHC Compiler will actually generate the minimum number of address lines required, but in order
to wire the WB_ASP device correctly into the FPGA design, the width of the bus must be defined
‘ahead of time'.

Use the Address Bus Width field to specify the width required. The width should be large enough to
include all parameters of the largest function being implemented in hardware (and accessed from
software). For example, consider the following functions destined to be compiled into hardware:

void chc plot init(intl6 t xx, intl6 t xy, intl6 t xz, intl6 t yx, intl6 t vyy,
intle t yz, intl6 t zx, intl6 t zy, intl6 t zz, uintl6_t* vgabuf, intl6 t*
zbuf);

void chc plot cube(uintl6 t* pl, uintl6 t* p2, uintl6é t* p3, uintlé t* p4,
uintl6e _t* p5, uintl6 t* p6);

void chc zbuf clear(intl6 t* zbuf);

void chc screen clear(uintlé t* zbuf);

The largest of these functions, in terms of associated parameters, is chc_plot_init. The total
parameters for this function is 11. In terms of addressing, it is not readily-apparent how wide the bus
must be, as the size of the address space depends on the number of parameters involved and the
data type of those parameters. The approach when designing is to start with the default address bus
size of 4 bits. This will be more than enough for most parameters in typical hardware-implemented
functions. In a schematic-based design, this setting will be reflected in the host interface address pin -
io ADR I.

Paramatar Bus Oplions

Sedect the size of the addiess bus width. 1t Wishbone ASP
should be laige enough bo addrass the
paranmeters of the langes funclion in the design. io_STH 1=+
 ——_ o CYC I
Address BugWidh: (4 ,‘,}_& i ACK O
e Cio ADR._I[3..0]
io DET_O[3T.0]
i DAT I[31..0] lew
o SEL_I[3..0)
in_WE_I
in CLE 1=+
10 RST =

Figure 3. Defining address bus width for the host interface.

Upon compilation, if the required address bus width is greater than that specified, the C-to-Hardware
Compiler will flag an error. In this case, simply reconfigure the WB_ASP with an increased value for
the address bus width.

If your FPGA design is schematic-based, this area of the dialog also enables you to specify the amount
of blank space between the host processor and external memory interfaces of the device. This can be
used to great effect to simplify wiring and enhance readability. Simply use the Extra space field as
required to increase or decrease the space.

Symbols In Hardware

This area of the dialog is divided into two lists. The upper list reflects all global variables present in
the linked embedded software project.

Global v anable Allocate i Hardware ~
moc_nrE_highpassf

rrec_nre_lowpass

nlmiz_pos v

rilves_ spk.
nilrr_weight il

A

spk_ir_lovepassf

Figure 4. Allocating global variables in hardware.

If you want to have a variable allocated in hardware, simply enable the corresponding check box in
the Allocate in Hardware column. Such a variable will be allocated in ASP block RAM by the CHC
Compiler. Access to this memory is much faster, in comparison to storage allocation in block RAM
outside of the ASP by the Embedded Compiler.

The list supports standard multi-select features (Shift+click, Ctrl+click and click & drag). This
enables you to quickly select multiple variables. Once selected, use the available right-click context
menu commands to quickly enable (Push to Hardware) or disable (Remove from Hardware) the
corresponding Allocate in Hardware option.

A global variable that is allocated in hardware can only be accessed by a function that has also been
implemented in hardware. Such a variable can not be called from a software-based function running
on the host processor.

The lower list in this region of the dialog reflects all functions present in the linked embedded
software project.

Fuiriction Implemert in Haidwaie Expoit to Soltwans -
dbd_irk

emaclZ_i1

il _aucho

Fik_emac

mar

e W W
nilmiz_init v v
ead_samples

reCene_samphe

sys_inikt

W
raremit_esamnls

Figure 5. Specifying which functions are to be implemented in
hardware.

If you want to implement a function in hardware - generated by the CHC Compiler as part of the ASP -
simply enable the corresponding check box in the Implement in Hardware column. Should you wish
to be able to call that hardware function from within the software running on the host processor,
ensure that the corresponding check box in the Export to Software column is also enabled.

To summarize the effect of using these two options:

- A function with enabled Implement in Hardware option will become a hardware function
- A hardware function can call another hardware function
- A hardware function can not call a software function

- A software function running on the host processor can call a hardware function, provided that
hardware function has been exported to software (Export to Software option enabled for function)

- A hardware-only function (not exported to software) can call a hardware function that has been
exported to software. Like-wise, a hardware function that has been exported to software can call a
hardware-only function.

The list supports standard multi-select features (Shift+click, Ctrl+click and click & drag). This
enables you to quickly select multiple functions. Once selected, use the available right-click context
menu commands to:

- Push to Hardware - enable Implement in Hardware option for each function in the selection.
- Remove from Hardware - disable Implement in Hardware option for each function in the selection.

- Push and Export to Hardware - enable Implement in Hardware and Export to Software options
for each function in the selection.

- Unexport from Hardware - disable Export to Software option for each function in the selection.

Allocation of variables and implementation of functions in hardware can also be performed from
within the C source code - either from the C To Hardware panel, or by right-clicking on a global
variable/function directly in the code editor and using the relevant commands that appear on the
context menu. When using the panel, only global variables and functions defined in the active C
document will be listed.

Source URL: http://techdocs.altium.com/display/FPGA/WB_ASP+-+Configuration#comment-0

